Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes.
نویسندگان
چکیده
While many anaerobic microbial communities are capable of reductively dechlorinating tetrachloroethene (PCE) and trichloroethene (TCE) to dichloroethene (DCE), vinyl chloride (VC), and finally ethene, the accumulation of the highly toxic intermediates, cis-DCE (cDCE) and VC, presents a challenge for bioremediation processes. Members of the genus Dehalococcoides are apparently solely responsible for dechlorination beyond DCE, but isolates of Dehalococcoides each metabolize only a subset of PCE dechlorination intermediates and the interactions among distinct Dehalococcoides strains that result in complete dechlorination are not well understood. Here we apply quantitative PCR to 16S rRNA and reductase gene sequences to discriminate and track Dehalococcoides strains in a TCE enrichment derived from soil taken from the Alameda Naval Air Station (ANAS) using a four-gene plasmid standard. This standard increased experimental accuracy such that 16S rRNA and summed reductase gene copy numbers matched to within 10%. The ANAS culture was found to contain only a single Dehalococcoides 16S rRNA gene sequence, matching that of D. ethenogenes 195, but both the vcrA and tceA reductive dehalogenase genes. Quantities of these two genes in the enrichment summed to the quantity of the Dehalococcoides 16S rRNA gene. Further, between ANAS subcultures enriched on TCE, cDCE, or VC, the relative copy number of the two dehalogenases shifted 14-fold, indicating that the genes are present in two different Dehalococcoides strains. Comparison of cell yields in VC-, cDCE-, and TCE-enriched subcultures suggests that the tceA-containing strain is responsible for nearly all of the TCE and cDCE metabolism in ANAS, whereas the vcrA-containing strain is responsible for all of the VC metabolism.
منابع مشابه
Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides.
Degenerate primers were used to amplify large fragments of reductive-dehalogenase-homologous (RDH) genes from genomic DNA of two Dehalococcoides populations, the chlorobenzene- and dioxin-dechlorinating strain CBDB1 and the trichloroethene-dechlorinating strain FL2. The amplicons (1,350 to 1,495 bp) corresponded to nearly complete open reading frames of known reductive dehalogenase genes and sh...
متن کاملQuantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains.
The 16S rRNA gene provides insufficient information to infer the range of chloroorganic electron acceptors used by different Dehalococcoides organisms. To overcome this limitation and provide enhanced diagnostic tools for growth measurements, site assessment, and bioremediation monitoring, a quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes and three Dehalococcoides reductive ...
متن کاملIdentification of Multiple Dehalogenase Genes Involved in Tetrachloroethene-to-Ethene Dechlorination in a Dehalococcoides-Dominated Enrichment Culture
Chloroethenes (CEs) are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH) by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated "YN3") that dechlorinates tetrachloroethene (PCE) to ETH with high dechlorination activity, that is, complete dechlorination of 800 μM PCE to ETH within 14 days in the...
متن کاملOxygen effect on Dehalococcoides viability and biomarker quantification.
Oxygen-sensitive Dehalococcoides bacteria play crucial roles in detoxification of chlorinated contaminants (e.g., chlorinated ethenes), and bioremediation monitoring relies on quantification of Dehalococcoides DNA and RNA biomarkers. To explore the effects of oxygen on Dehalococcoides activity, viability, and biomarker quantification, batch experiments with a tetrachloroethene-to-ethene dechlor...
متن کاملMultiple reductive-dehalogenase-homologous genes are simultaneously transcribed during dechlorination by Dehalococcoides-containing cultures.
Degenerate primers were used to amplify 14 distinct reductive-dehalogenase-homologous (RDH) genes from the Dehalococcoides-containing mixed culture KB1. Most of the corresponding predicted proteins were highly similar (97 to >99% amino acid identity) to previously reported Dehalococcoides reductive dehalogenases. To examine the differential transcription of these RDH genes, KB1 was split into f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 9 شماره
صفحات -
تاریخ انتشار 2006